20 października 2020

Zdrowotne i środowiskowe skutki spalania odpadów w piecach domowych

10 min read

Środa, godzina 05:05 okolice ronda w Tucholi. Odrażający, cuchnący opar utrzymuje się nad tym rejonem miasta. Smród jest charakterystyczny, wydzielany jest przez palący się styropian lub plastikowe butelki. Dosłownie nie ma czym oddychać, któryś z okolicznych właścicieli nieruchomości przy Świeckiej dogrzewa się, spalając nad ranem toksyczne odpady. Natychmiast w tym rejonie pojawia się jedno z naszych aut.

Niestety, jest już za późno, nie możemy ustalić źródła zanieczyszczenia powietrza,  mamy jednak swoje podejrzenia i relacje osób, które twierdzą, że sytuacja powtarza się!

__________oOo__________

Przenikanie do atmosfery rozmaitych substancji nazywa się emisją. Substancje te mogą występować we wszystkich trzech stanach skupienia (stałym, ciekłym i gazowym), a ich źródłem są naturalne procesy (chemiczne, fotochemiczne, biologiczne lub fizyczne) zachodzące w przyrodzie oraz działalność człowieka. Wielkość emisji określa ilość danego zanieczyszczenia przenikającego do atmosfery w określonym czasie, na przykład w kg/rok.

Ważnym źródłem zanieczyszczeń powietrza jest niska emisja, czyli efekt spalania w piecach domowych różnego rodzaju paliw. Substancje przedostające się do atmosfery z małych rozproszonych stacjonarnych źródeł punktowych, np. palenisk domowych, uwalniają głównie produkty spalania paliw kopalnych i, niestety, wszelkiego rodzaju śmieci. Rosnące zapotrzebowanie na energię uczyniło ze spalania główne źródło zanieczyszczeń atmosferycznych pochodzenia antropogenicznego. Najważniejsze z nich to:

  • polichlorowane dibenzo-p-dioksyny i polichlorowane dibenzofurany potocznie zwane dioksynami i furanami (PCDD/PCDF)
  • pył pochodzący z niepalnej części odpadów zawierający metale ciężkie, tj. chrom. nikiel, ołów, kadm, rtęć i wiele innych,
  • dwutlenek siarki emitowany z odpadów zawierających substancje bogate w siarkę.
  • tlenki azotu (tlenek, dwutlenek i podtlenek azotu) wydobywające się podczas spalania odpadów zawierających azot,
  • chlorowodór i fluorowodór jako konsekwencja obecności w odpadach substancji zawierających chlor i fluor,
  • dwutlenek i tlenek węgla będące naturalnymi produktami procesu spalania węglowodorów tworzących materię organiczną ulegającą spalaniu,
  • mikrozanieczyszczenia organiczne (w skład których wchodzi ponad 300 związków chemicznych w tym proste węglowodory alifatyczne i aromatyczne) wytwarzane na skutek niepełnego rozkładu termicznego materii organicznej,
  • alkohole, aldehydy, ketony, proste kwasy karboksylowe, proste węglowodory chlorowane (alifatyczne i aromatyczne) itp.

Dokładna ilość związków chemicznych powstających w procesie spalania odpadów nie jest znana. Dotychczas określono ich liczbę na około tysiąc, jednakże uważa się, że jest ich dwa, a nawet trzykrotnie, więcej.

Dioksyny

Do najgroźniejszych produktów spalania, w tym spalania śmieci, należą chlorowane związki organiczne, a szczególnie rodzina dioksyn: polichlorodwubenzodioksyny (PCDDs), polichlorodwubenzofurany (PCDFs), polichlorodwufenyle (PCBs) i polichloronaftaleny (PCNs). Najbardziej toksyczną z nich i także powstającą w procesie spalania odpadów jest 2,3,7,8 tetrachlorodwubenzo-p-dioksyna (TCDD). Jest ona 10.000 razy bardziej trująca niż cyjanek potasowy, a jej połowiczny rozpad w glebie trwa 160 lat. Poprzez swoje zdolności bioakumulacyjne odkłada się w tkance tłuszczowej i migruje w łańcuchu pokarmowym.

Przedostając się do organizmu człowieka powoduje m.in. kancerogenność, teratogenność, obniżenie odporności immunologicznej, osłabienia procesów wzrostu, osłabienie zdolności rozrodczych, zaburzenia neurologiczne i hormonalne. Amerykańska Agencja Ochrony środowiska, która prowadzi obecnie intensywne badania nad wpływem dioksyn na organizm człowieka, zamierza zaliczyć związki dioksyn do tzw. grupy A, czyli grupy rozpoznanych związków kancerogennych powodujących nowotwory u ludzi.

Metale ciężkie

W całkowitej emisji metali ciężkich na terenie Polski, wysoki jest udział emisji związany ze spalaniem węgla i śmieci w indywidualnych paleniskach domowych – jest to 10% dla rtęci, 30% dla ołowiu i ponad 40% kadmu. Metale ciężkie zostają uwolnione z odpadów, w których były związane. Odsetek metali w pozostałościach po spaleniu może być znaczny i może sięgać kilku procent. Znaczna część tych metali zawarta była w dodatkach do tworzyw sztucznych, co oznacza, że wyrzucone na zwykłe wysypisko (nieizolowane) przechodziłyby do środowiska w tempie rozkładu plastików, czyli przez kilkaset lat. Jednak po spaleniu odpadów zawarte w nich metale przechodzą w formy znacznie bardziej mobilne, np. chlorków i siarczanów, a wystawione na działanie czynników atmosferycznych (kwaśne deszcze) szybko zostają rozpuszczone i wypłukane. Badania wykazały, że po pewnym czasie 62% zawartego w pyłach kadmu, 30% miedzi i 32% cynku może ulec wypłukaniu.

Metale ciężkie mogą wywoływać zaburzenia w funkcjonowaniu organizmu. Ołów upośledza procesy syntezy hemoglobiny, negatywnie wpływa na funkcjonowanie szpiku kostnego i wątroby, obniża poziom witaminy D w organizmie, łączy się z grupami enzymów i białek powodując zmiany we krwi i naczyniach oraz wpływa na poziom żelaza w organizmie, wywołując anemię. Działanie kadmu jest zależne nie tylko od jego stężenia w powietrzu, ale także od czasu narażenia na jego działanie. Według obliczeń zatrucie śmiertelne u ludzi przy stężeniu kadmu wynoszącym 10 mg/m3 powietrza następuje po upływie 5 godzin. Niewielkie stężenia kadmu wpływają niekorzystnie na układ odpornościowy organizmu. Choroba itai-itai, wynikła z zatrucia kadmem, oprócz uszkodzeń nerek objawia się rozmiękczeniem kości (osteomalacją), i wzrostem ich kruchości (osteoporozą). U ludzi chorych obserwowano zaburzony metabolizm wapnia, fosforu, witaminy D oraz cukromocz. W 1993 roku kadm i jego związki zostały uznane przez Międzynarodową Agencję do Walki z Rakiem (IARC) za czynniki rakotwórcze u ludzi. Pary rtęci powodują w płucach odczyny zapalne i zaburzenia ośrodkowego układu nerwowego (wzmożona pobudliwość).

Przy zatruciach przewlekłych występują również zaburzenia ośrodkowego układu nerwowego, objawiające się drżeniem kończyn, zmianami osobowości, stanami depresji, a w ciężkich przypadkach halucynacjami. Szkodliwy wpływ na serce metali ciężkich – na przykład rtęci – może mieć związek z aktywnością fosfolipazy D – enzymu, pod wpływem którego tworzą się złogi na ścianach naczyń krwionośnych. Naukowcy z Ohio State University Medical Center badali działanie na organizm trzech postaci rtęci. Stosowano związek nieorganiczny – chlorek rtęci, chlorek metylortęci – typowe zanieczyszczenie środowiska – oraz stosowany w przemyśle farmaceutycznym thimerosal. Każda postać rtęci aktywując fosfolipazę D zmieniała zachowanie komórek, wyściełających naczynia krwionośne, co może prowadzić do chorób serca.

 

Chlor i siarka

W wyniku spalania chlor i siarka, obecne w odpadach komunalnych, stają się źródłem zanieczyszczeń kwasowych, takich jaj HCl i SOx. Sam chlor jest kluczowym elementem w powstawaniu organicznych związków chloru, takich jak dioksyny czy chloraminy. Stąd istotne jest poznanie zawartości chloru i siarki w różnych rodzajach śmieci wpadających do naszego kosza, które niestety bywają spalane w domowych piecach. Do spalenia przeznaczono odpadki kuchenne, papier, tekstylia, drewno i liście, plastiki oraz drobne odpadki (przechodzące przez sito o oczkach 5mm). Procedura doświadczalna pozwoliła na wyróżnienie palnej i niepalnej frakcji chloru i siarki.

Śmieci były spalane w piecu kwarcowym, w temperaturze 600oC. Efektem było powstanie gazów spalinowych i popiołów. Chlor i siarka obecne we frakcji gazowej zostały uznane za palne, te obecne w popiołach za niepalne. Średnia zawartość chloru w domowych śmieciach to 3,7 g/kg, z czego 2,7 g/kg to chlor frakcji palnej. Spośród odpadów domowych największym źródłem chloru jest plastik. Odpowiada za 76% chloru frakcji palnej i 27% frakcji niepalnej. Na kolejnych miejscach są: papier, odpowiednio 13 i 18%; odpadki kuchenne – 2 i 27%; drobne odpadki – 3 i 20%; tekstylia – 5 i 3%; drewno i liście – 2 i 4%. Średnia zawartość siarki w domowych śmieciach to 0,81 g/kg, z czego 0,46 g/kg to siarka frakcji palnej. Spośród odpadów domowych największym źródłem siarki frakcji palnej były tekstylia, frakcji niepalnej – papier. Tekstylia dały 55% siarki frakcji palnej i 5% frakcji niepalnej, a papier odpowiednio 13 i 45%. Innymi źródłami siarki były: odpadki kuchenne – 12 i 13%; plastiki – 9 i 10%; drobne odpadki – 7 i 23%;drewno i liście – 3 i 5%.

Pyły zawieszone

Pyły zawieszone to ciekłe krople lub stałe cząstki pochodzenia naturalnego jak w przypadku aerozolu soli morskiej lub pyłów mineralnych, albo cząstki produkowane przez człowieka jak to jest w przypadku aerozolu kropli lub cząstek stałych siarczanów. Często prekursorami pyłów zawieszonych są tlenki siarki i azotu, które są przekształcane w procesach chemicznych i fotochemicznych w aerozole atmosferyczne. Ze względu na wielkość cząstek pyły zawieszone można podzielić na:

  • PM2,5 – pyły o wielkości cząstek 2,5 mikrometra lub mniejszej
  • PM10 – pyły o wielkości cząstek 10 mikrometrów lub mniejszej
  • TSP – pyły o średnicy cząstek większej niż 10 mikrometrów

 

Zagrożenia zdrowotne związane z NO2, SO2 i pyłami zawieszonymi

Oddziały ratunkowe notują wizyty związane z niewydolnością układu oddechowego. Ich analiza w Palermo na Sycylii pozwoliła powiązać je z wysokim zanieczyszczeń powietrza. I tak, wzrost zanieczyszczenia PM10 o 10 μg/m3 zwiększa liczbę przypadków średnio o 4%, SO2 o 7%, NO2 o 4%. Zauważono, że kobiety są bardziej podatne na zwiększenie zanieczyszczenia. Badania prowadzone w Chinach pokazały, że wzrost stężenia pyłu zawieszonego PM10 o 10 µg/m3 w ciągu roku, odpowiada wzrostowi śmiertelności w wyniku chorób serca o 55%, a w wyniku wylewów o 49%. Zwiększenie śmiertelności związanej ze wzrostem stężenia NO2 o 10 µg/m3 w ciągu roku wynosi odpowiednio 146% dla chorób serca i 144% dla wylewów. Wzrost zanieczyszczenia powietrza jest szczególnym zagrożeniem dla płodu. Stwierdzono, że wzrost stężenia ozonu oraz pyłów PM10 i PM2.5  koreluje ze wzrostem stężenia białka C-reaktywnego we krwi kobiet będących we wczesnej ciąży. Białko to jest wyznacznikiem stanu zapalnego w organizmie, a stany zapalne mogą bardzo niekorzystnie wpływać na kondycję płodu.

Wielopierścieniowe węglowodory aromatyczne (WWA)

Wielopierścieniowe węglowodory aromatyczne (WWA) stanowią liczną grupę związków o budowie pierścieniowej, charakteryzujących się zbliżonymi własnościami fizykochemicznymi. Większość WWA występuje w powietrzu w postaci par lub aerozoli. WWA znajdujące się w powietrzu osadzone są na pyle o równoważnej średnicy ziarna, wynoszącej około 0,5 nm. Wielopierścieniowe węglowodory aromatyczne należą do głównej grupy związków chemicznych odpowiedzialnych za zanieczyszczenie środowiska.

Ich źródłem są procesy spalania różnego rodzaju paliw do silników, ogrzewania mieszkań lub spalanie śmieci. WWA nie występują w środowisku w postaci pojedynczych związków – zawsze tworzą mieszaniny wieloskładnikowe. Skład ilościowy i jakościowy tych mieszanin zależy od rodzaju materiału spalanego oraz warunków, w jakich zachodzi proces spalania. Najwięcej WWA powstaje podczas spalania w niskiej temperaturze, które jest charakterystyczne dla pieców domowych. Oceniono narażenie indywidualne na działanie dziewięciu występujących w atmosferze wielopierścieniowych węglowodorów aromatycznych (WWA) w grupie osób niepalących i zawodowo nie narażonych na działanie tych węglowodorów w miejscu pracy.

Przez 48 godzin stężenie pyłów PM2,5 było monitorowane w domu, pracy, w środkach komunikacji miejskiej i podczas pozostałych czynności ochotników. Badania były przeprowadzane w lecie i podczas zimy. Głównymi węglowodorami występującymi w otoczeniu były fluoranten i indeopiren. Stężenia badanych WWA wahały się w granicach od 0,13 to 1,67 ng/m3 w skali roku. Stężenie najbardziej kancerogennego węglowodoru – benzopirenu – wynosiło 0,67 ng/m3. Narażenie na działanie WWA było od 3 do 25 razy większe zimą niż latem, co łatwo można wyjaśnić znacznym nasileniem niskiej emisji. Na podstawie powyższych danych oceniono prawdopodobieństwo zapadnięcia na raka płuc ze względu na działanie WWA. Wynosi ono 7,8 na 100 000 mieszkańców. Jest ono, co prawda, 2 do 3 razy niższe niż to związane z pracą w przemyśle węglowym czy hutniczym, lecz dotyczy ogromnej populacji mieszkańców miast.

_________________________

Marta Tarabuła-Fiertak

Literatura:

1. Bezak-Mazur E., 1999, Elementy Toksykologii Środowiskowej, Skrypt, Wydawnictwo Politechniki Śląskiej, Kielce.

2. Dutkiewicz T., 1974, Chemia Toksykologiczna, Państwowy Zakład Wydawnictw Lekarskich, Warszawa.

3.Guo Y., Tong S., Li S., Barnett A.G., Yu W., Zhang Y., Pan X., 2010, Gaseous air pollution and emergency hospital visits for hypertension in Beijing, China: a time-stratified case-crossover study. Environ Health. 5:9-57.

4. Lee P.C., Talbott E.O., Roberts J.M., Catov J.M., Sharma R.K., Ritz B., 2011, Particulate air pollution exposure and C-reactive protein during early pregnancy. Epidemiology 22(4):524-31.

5. Sapota A., 2002, Wielopierścieniowe węglowodory aromatyczne(substancje smołowe rozpuszczalne w cykloheksanie). Podstawy i Metody Oceny Środowiska Pracy 2(32): 179-208

6. Silverman R.A., Ito K., Freese J., Kaufman B.J., De Claro D., Braun J., Prezant D.J., 2010, Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am J Epidemiol. 172(8):917-23.

7. Tramuto F., Cusimano R., Cerame G., Vultaggio M., Calamusa G., Maida C.M., Vitale F., 2011, Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy. Environ Health 13:10-31.

8. Watanabe N., Yamamoto O., Sakai M., Fukuyama J., 2004, Combustible and incombustible speciation of Cl and S in various components of municipal solid waste. Waste Manag. 24(6):623-32.

9. Zhang P., Dong G., Sun B., Zhang L., Chen X., Ma N., Yu F., Guo H., Huang H., Lee Y.L., Tang N., Chen J., 2011, Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One. 6(6):e20827

10. Zmirou D., Masclet P., Boudet C., Dor F., Déchenaux J., 2000, Personal exposure to atmospheric polycyclic aromatic hydrocarbons in a general adult population and lung cancer risk assessment. J Occup Environ Med. 42(2):121-6.

Please follow and like us:
Social Share Buttons and Icons powered by Ultimatelysocial
RSS
Follow by Email
Facebook
Facebook